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Concurrent Multiscales: Motivation

• Molecular dynamics simulations are limited to small domains  (~106-108

atoms) and small time frames (~nanoseconds)
– Experiments, even on nano-systems, involve much larger systems over 

longer times

• Continuum models are good, but not always adequate
– Problems in fracture and failure of solids require improved constitutive 

models to describe material behavior
– Molecular dynamics is required in regions of high deformation or

discontinuity

• Multiple scale nature of these problems calls for a combined molecular 
dynamics/continuum mechanics approach



Concurrent Multiple Scales: Goals

• Method for coupling molecular dynamics to finite element or meshfree 
computations in concurrent simulations

– Simulation of  time dependent, finite temperature problems

• True “coarse scale” discretization in continuum
– No meshing down to atomic scale
– Subcycling time-stepping algorithms to take advantage of multiple time 

scales
• don’t want to be limited to nano time scale everywhere in the domain

• Easy implementation
– Re-use of existing MD and continuum codes
– Easily parallelizable algorithms



Concurrent Coupled Simulations

• Molecular dynamics to be used in 
region of interest

– near crack/shear band tip
– inside shear band
– at area of large deformation
– around dislocations
– etc.

• Finite elements/meshless “coarse 
scale” defined everywhere in 
domain 

– not just overlap/handshake region

• Bridging scale used to ensure FEM 
gives correct coarse scale behavior



2-Part Strategy for Multiscale Coupling

• First, formally define exactly what is simulated at each scale
– decompose total solution into coarse and fine scales

– “bridging scale” used to represent the part of the total solution 
common to both simulations

• provides coupling between the two simulations

• Second, eliminate fine scale degrees of freedom analytically 
outside of region of interest
– use molecular dynamics (MD) only where necessary
– use bridging scale decomposition to further define coupling between 

simulations
• constitutive law in pure coarse scale region

• boundary conditions on MD region



• Fields like displacement are decomposed into coarse and fine 
scales:

• Coarse scale is represented by smooth basis functions 
associated with nodes, e.g. finite element shape functions:

– nodal degrees of freedom minimize mass-weighted error norm:

– This leads to a definition of the coarse scale in terms of a projection 
matrix:

( ) uMNNMNd
d A

T
A

T

d

dE 1
0

−=⇒=

Puu =

( ) ( )NduMNdu −−= A
TE

uuu ′+=

( ) ( )∑=
I

IIN dXXu αα Ndu =matrix
notation

Coarse-Fine Decomposition

( ) A
T

A
T MNNMNNP

1−=



Coarse-Fine Decomposition
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• Once coarse scale is defined, fine scale is “everything else”:



• Use FEM for the coarse scale, MD for the fine scale in the 
decomposition:

• With our choice of projection operator, kinetic energy separates
completely into coarse and fine scales:

• Coupling between scales is only through the forcing term
– Final momentum equations become:

Reference: G. Wagner and W.K. Liu, JCP 190:249-74 (2003).

Concurrent Multiscale Solution

qMqdMd ����
~

2

1

2

1 TT
EK +=

( )
( )uufq

uuNfdM

′+=
′+=

ααα ��

��

m:scale Fine

:scale Coarse

( )qPIu

Ndu

−=
=

’

solve d using FEM

solve q using MD



Coarse Scale Modeling

• Coarse scale equation can be related to usual finite element treatment 
by approximating summations over atoms as domain integrals:

• The nodal force depends on the coarse scale only through the 
deformation gradient F:
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Fine Scale Boundary Conditions

• We want to avoid grading the coarse mesh down to the atomic lattice 
scale at the boundary

– expensive
– too much information
– limits coarse scale time step

• Information passes from a fine MD lattice directly into a coarse scale 
mesh

– small-scale energy can’t be represented on the coarse scale, has nowhere 
else to go

– leads to internal reflection of small scale waves

• Proper boundary treatment requires accounting for fine scale dynamics 
that are not simulated directly

– correct boundary treatment falls out automatically from bridging scale 
decomposition

• linearize in the fine scales at the boundary



MD Boundary Condition

where f*(t) are forces computed using just the coarse scale 
displacements outside MD region (e.g. through “ghost atoms”)

• The total forcing term consists of three major parts:
– The standard interatomic force computed in MD simulation by 

assuming displacements of all atoms just outside the boundary are 
given by the coarse scale

– A time history-dependent dissipation at the boundary (similar to a 
damping term)

– A random forcing term at the boundary
• the form of this term can be related to the temperature of the solid:
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Example Problem: 1D Harmonic Chain



Effects of BC’s on Internal Wave Reflection
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Energy Transfer out of MD Region



Energy Transfer out of MD Region: 
Nonlinear Potential



Damping Kernels in Multiple Dimensions

• Damping kernel can be easily computed for 
any regular crystal lattice across a planar 
boundary

– periodicity allows spatial Fourier transform
– unit cells can be indexed (l,m,n) in 3D, or (l,m) in 

2D
– boundary condition obtained by solving for 

atoms just outside boundary (l=1) in terms of 
atoms just inside boundary (l=0)

– final boundary condition has form of time 
history integration with spatial coupling along 
boundary:

– note that u and f are vectors containing all dof’s 
in the unit cell, and T is a matrix coupling them

– Reference: G. Wagner, E. Karpov and W.K. Liu. 
Comp Meth. Appl. Mech. Eng., to appear (2004).
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Damping Kernels in 3D: Carbon Structures



2D Multiscale Wave Propagation
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Energy Transfer 
Rates:
No BC:  35.47%
Ncrit = 0:  90.94%
Ncrit = 1:  92.85%
Ncrit = 2:  93.34%
Ncrit = 4:  95.27%
Full MD:  100%

Harold Park, Northwestern University



2D Dynamic Crack Propagation

FE + MD

FE

FE

Pre-crack

Problem Description:
• LJ 6-12 potential, σ=ε=1
• Nearest neighbor interactions
• 90000 atoms, 1800 finite 

elements (900 in coupled region)
•100 atoms per finite element

• ∆tfe = 40∆tmd
• Ramp velocity BC on FEM
• Full MD = 180,000 atoms

velocity

time
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Summary: Coupled MD/FEM

• Bridging scale decomposition allows concurrent simulation of fine 
scale using MD and coarse scale using FEM
– bridging scale projection provides a unique decomposition of total 

solution for separation into coarse and fine scales
– coarse scale mesh need not correspond to atomic lattice for coupling
– subcycling can be used to take advantage of the different time scales in 

the coarse and fine regions
– coarse scale equations and boundary conditions follow directly from the 

multi-scale formulation

• Future work:
– study of approximations in boundary conditions

• truncations of summations/integrals, approximations to kernel function

– determination of most accurate/efficient integration of coarse scale region 
near MD boundary

– development of coupled energy equation to track fine scale energy
• time averaging as part of coarse scale projection


